Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Journal of Building Engineering ; 63, 2023.
Article in English | Scopus | ID: covidwho-2244886

ABSTRACT

Ventilation in confined spaces is essential to reduce the airborne transmission of viruses responsible for respiratory diseases such as COVID-19. Mechanical ventilation using purifiers is an interesting solution for elevator cabins to reduce the risk of infection and improve the air quality. In this work, the optimal position and blowing direction of these devices to maximize ventilation and minimize the residence time of the air inside two cabins (large and small) is studied. Special attention is devoted to idle periods when the cabin is not used by the passengers, in order to keep the cabin ambient safe and clean, avoiding that the trapped air in the cabin (after its use) could suppose a reservoir for contaminants. CFD numerical models of two typical cabin geometries, including the discretization of small slots and grilles for infiltration, have been developed. A full 3D URANS approach with a k-epsilon RNG turbulence model and a non-reactive scalar to compute the mean age of air (MAA) was employed. The CFD results have been also validated with experimental measurements from a home-made 1:4 small-scale mock-up. The optimal position of the purifier is on the larger sidewall of the cabins for a downward blowing direction (case 1 of the database). Flow rates in the range of 0.4–0.6 m3/min, depending on the size of the cabin, are sufficient to assure a correct ventilation. Upward blowing may be preferable only if interaction of the jet core with the ceiling or other flow deflecting elements are found. In general, the contribution of infiltrations (reaching values of up to 10%), and how these secondary flows interact with the main flow pattern driven by the purifier, is relevant and not considered previously in the literature. Though an optimal position can improve ventilation considerably, it has been proven that a good choice of the purification flow rate is more critical to ensure an adequate air renewal. © 2022 The Authors

2.
Sustain Cities Soc ; 79: 103718, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1655146

ABSTRACT

Effective ventilation could reduce COVID-19 infection in buildings. By using a computational fluid dynamics technique and advanced experimental measurement methods, this investigation studied the air velocity, air temperature, and particle number concentration in an office under a mixing ventilation (MV) system and a displacement ventilation (DV) system with different ventilation rates. The results show reasonably good agreement between the computed results and measured data. The air temperature and particle number concentration under the MV system were uniform, while the DV system generated a vertical stratification of the air temperature and particle number concentration. Because of the vertical stratification of the particle number concentration, the DV system provided better indoor air quality than the MV system. An increase in ventilation rate can reduce the particle concentration under the two systems. However, the improvement was not proportional to the ventilation rate. The increase in ventilation rate from 2 ACH to 4 ACH and 6 ACH for MV system reduced the particle concentration by 20% and 60%, respectively. While for the DV system, increasing the ventilation rate from 2 ACH to 4 ACH and 6 ACH reduced the particle concentration by only 10% and 40%, respectively. The ventilation effectiveness of the MV system was close to 1.0, but it was much higher for the DV system. Therefore, the DV system was better than the MV system.

3.
Indoor Air ; 32(1): e12917, 2022 01.
Article in English | MEDLINE | ID: covidwho-1388295

ABSTRACT

Tracer gas experiments were conducted in a 158 m3 room with overhead supply diffusers to study dispersion of contaminants from simulated speaking in physically distanced meeting and classroom configurations. The room was contained within a 237 m3 cell with open plenum return to the HVAC system. Heated manikins at desks and a researcher operating the tracer release apparatus presented 8-9 thermal plumes. Experiments were conducted under conditions of no forced air and neutral, cooled, or heated air supplied at 980-1100 cmh, and with/out 20% outdoor air. CO2 was released at the head of one manikin in each experiment to simulate small (<5 µm diameter) respiratory aerosols. The metric of exposure relative to perfectly mixed (ERM) is introduced to quantify impacts, based on measurements at manikin heads and at three heights in the center and corners of the room. Chilled or neutral supply air provided good mixing with ERMs close to one. Thermal stratification during heating produced higher ERMs at most manikins: 25% were ≥2.5 and the highest were >5× perfectly mixed conditions. Operation of two within-zone air cleaners together moving ≥400 cmh vertically in the room provided enough mixing to mitigate elevated exposure variations.


Subject(s)
Air Pollution, Indoor , Ventilation , Air Conditioning , Air Movements , Heating
SELECTION OF CITATIONS
SEARCH DETAIL